
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Module 6, Lesson 1
Security

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

2

Warmup: what’s wrong with how
security.town does passwords?

Warmup:
what should we do about passwords?

• Common responses: make sure passwords that we
store stay on the server

• But we also maybe shouldn’t have the passwords
• That may mean we give someone else the passwords

and never keep them on our server.

• That may also mean we store something that’s not the
password.

3

Cryptographic Primitive #1: Hash

square(-4.5) = 20.25

• Exactly two real numbers could have produced that output

• You can easily find the other one

• You can easily find x such that square(x) = 28.25 easily

sha256(“password”) = 5e884898da28047151d0e56f8dc6292773603d0d6aa…

• (Probably) infinitely many strings could have produced that output

• You cannot easily find another one

• You cannot easily find x such that sha256(x) = 5e984898da2804715…

4

Cryptographic Primitive #1: Hash

• There’s like, a couple dozen good cryptographic
hashes out there. You should know about a like, six:
• MD4 — run screaming from anyone who uses this for

anything besides, like, a hashtable

• MD5, SHA-0 — don’t use these

• SHA-1 — some issues for some applications, but like, git
works because this is fine

• SHA-256 — Bitcoin does its thing because this is fine

• SHA-most-anything-else — fine-to-overkill

5

Warmup:
what should we do about passwords?

• Common responses:

• But we also don’t have to store the passwords
• That may mean we give someone else the passwords

and never keep them on our server.

• That may also mean we store something that’s not the
password.

• Storing the sha256(password) means that even if
someone gets everything on our server, they can’t
easily find anyone’s password… right?

6

Warmup:
what should we do about passwords?

…also, let’s compute the
sha256 of all of them
and add them to our
rainbow table: people
reuse passwords

7https://xkcd.com/2176/

Warmup:
what should we do about passwords?

To check auth, check if sha256(salt + password) = hash

8

Security Principle #1:
Use an established solution

Special case of this principle is “never roll your own crypto”

9

10

Security is all over the SE map

IMPLEMENTING

ORGANIZING

PLANNING

PEOPLE PROCESSES PROGRAMS

Learning Objectives for this Lesson

• By the end of this lesson, you should be able to:
• Explain why you should always hash and salt your

passwords

• Have basic literacy in some key cryptographic primitives
(hashes, message authentication codes, and encryption)

• Define key terms (attack surface, threat model) relating
to software/system security

• Explain why all aspects of software engineering are
necessary to think about in order to think about security

11

Security is a multiplayer game

The threat model specifies the
rules you imagine that the other
person is playing by

• Strategy.town has radically
different applicable threat
models than, say, Signal

The attack surface specifies
where the other player gets to
play the game

12

https://xkcd.com/538/

Security is a multiplayer game

Simple threat model and attack surface: on the web, an
attacker can make arbitrary requests to any API endpoints and
send arbitrary messages over websockets, and can directly
interpret every message that comes from the server.

Obvious consequences:

• Don’t put secrets in a game’s View type (the fact that it’s not
shown in React isn’t sufficient!)

• Validate that it’s your turn on the backend (disabling the
“make move button” in React isn’t sufficient!)

13

14

Security is a multiplayer game

Obvious consequences
frequently are not:

15

Security is a multiplayer game

Keep an eye on
which game
you are playing

Security Principle #2:
Watch for new attack surfaces

“Reverse shells” make a new attack surface

16
https://www.reddit.com/r/csMajors/comments/rlkf55/if_your_school_uses_gradescope_autograder_hidden/

Security Principle #2:
Watch for new attack surfaces

Code and SQL injection is a new attack surface

Don’t roll your own solution — use established library! (Zod, Mongoose…)

17

https://xkcd.com/327/

https://xkcd.com/327/

Security Principle #2:
Watch for new attack surfaces

Log4J could trigger arbitrary HTTP requests from places that weren’t
supposed to be able to make HTTP requests

18
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html

CVE-2021-44228 Detail
Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log

messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who

can control log messages or log message parameters can execute arbitrary code loaded from

LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled

by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this

vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Security Principle #3:
Beware the man in the middle

You and Amazon can’t actually see each other. How
do you know you’re interacting with Amazon?

19

Human User

Amazon
Website

Copy of
Amazon
Website

Amazon
API

Additional
API

Security Principle #3:
Beware the man in the middle

With CORS, Amazon’s API tells the web browser:
ignore my response unless the user is on amazon.com

20

Human User

Copy of
Amazon
Website

Amazon
API

Additional
API

Security Principle #3:
Beware the man in the middle

Proxying those requests gives Amazon’s website
more opportunities to notice something is wrong

You may need to use proxying to deal with
CORS in your projects!

21

Human User

Copy of
Amazon
Website

Amazon
API

Proxy
API

!!!

Browsers are Fascinating

• Influenced by browser makers,
consumer choices, standards
bodies, online businesses…

• CORS works because
~everyone would rather have
CORS in their browser (but
remember your threat model!)

• Browser monopolies arise and
change the balance of power

22

https://arstechnica.com/gadgets/2023/07/googles-web-integrity-api-sounds-like-drm-for-the-web/

Browsers are Fascinating: Cookies

23

• Cookies add sessions to HTTP requests — the login
API end point can set a cookie and subsequent
HTTP requests will send it back.

• If JavaScript has no business viewing the cookie, it
can be an HTTP ONLY cookie — code can’t see it
• BUT THE USER CAN! (Remember your threat model!!!)

• Makes it unnecessary to send (and verify!) the
password every time.

• Of course, it’s also how Facebook knows what jobs
you applied for…

Security Architecture

24

• CORS and HTTP ONLY cookies are part of the security
architecture of browsers— the mechanisms and policies
that we build into our system to mitigate threats

25

Security Architecture and Security Culture

• Don’t check API keys (basically
passwords someone else
generates for you) into git, ever!

• Tools like GitGuardian
automatically detect secrets in
repositories

Security Architecture and Security Culture

• Industrial study of secret detection tool in a large
software services company with over 1,000
developers, operating for over 10 years

• What do developers do when they get warnings of
secrets in repository?
• 49% remove the secrets; 51% bypass the warning

• Why do developers bypass warnings?
• 44% report false positives, 6% are already exposed

secrets, remaining are “development-related” reasons,
e.g. “not a production credential” or “no significant
security value”

26

Is this a problem?
Whose problem is it?

Cryptographic Primitive #2: Signing

• Your server can have a secret key (just a random one)

• If you compute sha256(secret + message) = hash, then give the message
AND the hash to someone else, they can hand you back the message
and the hash later, and you can believe “you” (someone who knew the
secret) agreed to compute that hash — no one else could!

• The hash is an HMAC: a Hash Message Authentication Code

• Sign message “this is user2”: that plus the HMAC is your cookie!

27

Cryptographic Primitive #2: Signing

• Public key encryption allows asymmetric signing
• Paired public key and private key

• Anyone with the public key can verify that a message was signed only by
someone with the private key

• One basis of the security of HTTPS

28

Human User

Amazon
Website

Amazon public key

Amazon private key

“I’m totally Jeff Bezos”
Signed, the person with
private key that matches
Amazon public key Amazon public key

Security Principle #4:
Chains and webs of trust

Your browser or computer shipped with some public keys:

• Google Trust Services LLC (GTS Root R4) public key

• Internet Security Research Group (ISRG Root X1) public key

• DigiCert High Assurance EV Root CA public key

29

Security Principle #4:
Chains and webs of trust

DigiCert High Assurance EV Root CA private key holder

• Signs the message “Whoever has the private key matching
DigiCert SHA2 Extended Validation Server CA public key seems
legit and is a certificate authority”

DigiCert SHA2 Extended Validation Server CA private key holder

• Signs the message “Whoever has the private key matching
paypal.com public key is definitely associated with the legal
entity PayPal.com, but is not a certificate authority”

www.paypal.com private key holder

• Signs the message “Hi, if you think you’re connecting to
https://www.paypal.com/, would you like to give me your
password?” 30

Security Principle #4:
Chains and webs of trust

Internet Security Research Group (ISRG Root X1) private key holder

• Signs the message “Whoever has the private key matching Let's
Encrypt (R10) private key seems legit and is a certificate
authority”

Let's Encrypt (R10) private key holder

• Signs the message “Whoever has the private key matching
social.wub.site public key seems legit associated with that
domain, but not as a certificate authority”

social.wub.site private key holder (that is, Rob)

• Signs the message “Hi, if you think you’re connecting to
https://social.wub.site/, would you like to give me your
password?” 32

Security Principle #4:
Chains and webs of trust

• You can do this on your own server for free

• This wasn’t the case before the Let’s Encrypt nonprofit!

33

34

Security Principle #4:
Chains and webs of trust

Skechy
Wifi

Network

Strategy
town

Not
Strategy

town

I would like
to connect
to strategy.town

I need to get SOMEONE the
user trusts to vouch that

I’m strategy.town

Security Principle #4:
Chains and webs of trust

Let’s Encrypt is vouching for anyone IT SEES as the strategy.town owner

35

Skechy
Wifi

Network

Strategy
town

Not
Strategy

town

I would like
to connect
to strategy.town

Hopefully
Less

Sketchy
Internet

I need to get SOMEONE the
user trusts to vouch that

I’m strategy.town

Security Principle #4:
Chains and webs of trust

• Modern TLS/HTTPS security relies on the security
of the domain name system

• The DNS system has its own security issues and
threat models!

36https://dig.watch/trends/dotorg

Cryptographic Primitive #3:
Shared secret encryption

• Absolutely perfect security via one-time pads
• You and I both have n TRULY

RANDOM bytes X

• You send me X xor Message

• I decode message by computing
(X xor Message) xor X = Message

• ONLY FOR ONE TIME!!!

37

https://en.wikipedia.org/wiki/One-time_pad

Cryptographic Primitive #3:
Shared secret encryption

• There are a couple of reasonably secure symmetric encryption standards

• Use a small shared secret to encrypt lots of data

• We think most of the ones we currently use are pretty secure, even
against quantum computers

• Problem: how do share a secret with Amazon?

38

Human User

Amazon
Website

Amazon public key
Amazon private key

Amazon public key

Cryptographic Primitive #3:
Shared secret encryption

• Problem: how do share a secret with Amazon?

• If two people know two public keys and either one of the corresponding
private keys, they can do math to come up with a shared secret, and use
that for symmetric encryption!

• Textbook ways of doing this are very vulnerable to quantum computers

39

Human User

Amazon
Website

Amazon public key
Amazon private key

Amazon public key

Rando private key

Hi i’m a rando,
here’s my Rando
public key

Rando public key

Rando public +
Amazon pubic +

Amazon private =
SAME huge

number

Rando public +
Amazon pubic +
Rando private =

some huge
number

Review of this whirlwind tour

Four big ideas Rob thought were worth emphasizing:

1. Use an established solution

2. Watch for new attack surfaces

3. Beware the man in the middle

4. It’s all chains and webs of trust

Three cryptographic primitives you should be aware of:

1. Hash

2. Signing/message authentication codes

3. Shared secret encryption

40

Learning Objectives for this Lesson

• Now that it’s the end of the lesson, you should be
able to:
• Explain why you should always hash and salt your

passwords

• Have basic literacy in some key cryptographic primitives
(hashes, message authentication codes, and encryption)

• Define key terms (attack surface, threat model) relating
to software/system security

• Explain why all aspects of software engineering are
necessary to think about in order to think about security

41

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 6, Lesson 1 Security
	Slide 2: Warmup: what’s wrong with how security.town does passwords?
	Slide 3: Warmup: what should we do about passwords?
	Slide 4: Cryptographic Primitive #1: Hash
	Slide 5: Cryptographic Primitive #1: Hash
	Slide 6: Warmup: what should we do about passwords?
	Slide 7: Warmup: what should we do about passwords?
	Slide 8: Warmup: what should we do about passwords?
	Slide 9: Security Principle #1: Use an established solution
	Slide 10: Security is all over the SE map
	Slide 11: Learning Objectives for this Lesson
	Slide 12: Security is a multiplayer game
	Slide 13: Security is a multiplayer game
	Slide 14: Security is a multiplayer game
	Slide 15: Security is a multiplayer game
	Slide 16: Security Principle #2: Watch for new attack surfaces
	Slide 17: Security Principle #2: Watch for new attack surfaces
	Slide 18: Security Principle #2: Watch for new attack surfaces
	Slide 19: Security Principle #3: Beware the man in the middle
	Slide 20: Security Principle #3: Beware the man in the middle
	Slide 21: Security Principle #3: Beware the man in the middle
	Slide 22: Browsers are Fascinating
	Slide 23: Browsers are Fascinating: Cookies
	Slide 24: Security Architecture
	Slide 25: Security Architecture and Security Culture
	Slide 26: Security Architecture and Security Culture
	Slide 27: Cryptographic Primitive #2: Signing
	Slide 28: Cryptographic Primitive #2: Signing
	Slide 29: Security Principle #4: Chains and webs of trust
	Slide 30: Security Principle #4: Chains and webs of trust
	Slide 32: Security Principle #4: Chains and webs of trust
	Slide 33: Security Principle #4: Chains and webs of trust
	Slide 34: Security Principle #4: Chains and webs of trust
	Slide 35: Security Principle #4: Chains and webs of trust
	Slide 36: Security Principle #4: Chains and webs of trust
	Slide 37: Cryptographic Primitive #3: Shared secret encryption
	Slide 38: Cryptographic Primitive #3: Shared secret encryption
	Slide 39: Cryptographic Primitive #3: Shared secret encryption
	Slide 40: Review of this whirlwind tour
	Slide 41: Learning Objectives for this Lesson

