CS 4530: Fundamentals of Software Engineering
Module 6, Lesson 1
Security

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Warmup: what’s wrong with how
security.town does passwords?

Warmup:
what should we do about passwords?

e Common responses: make sure passwords that we
store stay on the server

* But we also maybe shouldn’t have the passwords

* That may mean we give someone else the passwords
and never keep them on our server.

* That may also mean we store something that’s not the
password.

Cryptographic Primitive #1: Hash

square(-4.5) = 20.25

* Exactly two real numbers could have produced that output
* You can easily find the other one

* You can easily find x such that square(x) = 28.25 easily

sha256(“password”) = 5e884898da28047151d0e568dc6292773603d0d6aa...
* (Probably) infinitely many strings could have produced that output
* You cannot easily find another one

* You cannot easily find x such that sha256(x) = 5e984898da2804715...

Cryptographic Primitive #1: Hash

* There’s like, a couple dozen good cryptographic
hashes out there. You should know about a like, six:

e MD4 — run screaming from anyone who uses this for
anything besides, like, a hashtable

MDS5, SHA-O — don’t use these

SHA-1 — some issues for some applications, but like, git
works because this is fine

SHA-256 — Bitcoin does its thing because this is fine
SHA-most-anything-else — fine-to-overkill

Warmup:
what should we do about passwords?

* Common responses:

* But we also don’t have to store the passwords

 That may mean we give someone else the passwords
and never keep them on our server.

* That may also mean we store something that’s not the
password.

 Storing the sha256(password) means that even if
someone gets everything on our server, they can’t
easily find anyone’s password... right?

Warmup:

what should we do about passwords?

CONTROL, WE HAVE FLOWN
TO THE USA AND BREACHED
THE TARGET'S HOUSE.

THEY WROTE ALL THEIR
PRsSS\JOEDS IN A BOOK
LABELED "PASSWORDS'!

THE FOOL!

HEY LOOK, SOMEONE LEAKED THE
EMAILS AND PASSWJORDS FROM THE
SMASH MOUTH MESSAGE. BOARDS.

COOL, LET'S TRY
THEM ALL ON VENMO.

HOW PEOPLE THINK
HACKING WORKS

https://xkcd.com/2176/

HOW IT ACTUALLY LIORKS

...also, let’s compute the
sha256 of all of them
and add them to our
rainbow table: people
reuse passwords

Warmup:
what should we do about passwords?

To check auth, check if sha256(salt + password) = hash

_id: ObjectId('680fd9ee2b6fleb9eblc8b40"')
user : ObjectId('680fd9ed2b6fleb9eblc8b3e')
username : "vihaarreddyy"
salt : Binary.createFromBase64 ('xVI7JEOwmghcktREj7E1Q96BRple7QRxxbLcRcuGUWH1eGQIB+vBaF7rlvtgSNamsAqY3JgTLlYNw3tU+6c490ens9xFyds206p/+.
hash : Binary.createFromBase64('jiS1BXys1P8HbuAAbgv70/k54e527+2/z3+DFqrL+4yOw2W6FNStdHzO76vxoGUPtqwsfpTEvL7uabg4vaSolg==", 0)
v: 0

_id: ObjectId('68136flec5df6e25e2c0@a328"')
user : ObjectId('68136flec5df6e25e2c0@a326"')
username : '"sockpuppet"
salt : Binary.createFromBase64('em3000mP2c+eoUulFOhm1lD3VKagavvqYRFRR4tVd91GDq9aXBVowbywvIPGIViy8VosDdcKNnnfA3dhGob04A/YWEai8UrgAaQss..
hash : Binary.createFromBase64 ('q8MRMfM5GXMMsNKfgBlLaVD]j/300ebLUObaHTcfCI4XRAOIrEgQ6XHvh+YX9edRs6ELldUoi4kEETLO/gItdHHW==", 0)
v: 0

_id: ObjectId('6818e2e2c5df6e25e2c0ad481')
user : ObjectId('6818e2e2c5df6e25e2c0a47f!')
username : "Satan"
salt : Binary.createFromBase64 ('nLFMXtqIiZWlOw8xmjvkglOSx7fgcOHIJAOwbp7RzGN1vKbdn57AUATQPGVY4Gy9ppZlp5Z2qIqUyUBBnCGfI6RK+oMKQRhfcbZ1sc..
hash : Binary.createFromBase64 ('ae/AVfEWF7CilwRE05qW6KUz1tTgpCPswugOW9S9GtxK4qcB5k/g9fcfHz97yqjpGAwk2tY3YkXumd/jFIXYhA==", 0)
v: o0

Security Principle #1.:
Use an established solution

Special case of this principle is “never roll your own crypto”

import { scrypt } from 'node:crypto'; | |

(alias) function scrypt(password: BinarylLike, salt: BinarylLike, keylen: number, callback: (err: Error | null,
derivedKey: Buffer) => void): void (+1 overload)
import scrypt

Provides an asynchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive
computationally and memory-wise in order to make brute-force attacks unrewarding.

The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for

details.
When passing strings for password or salt , please consider caveats when using strings as inputs to cryptographic
APIs .

The callback function is called with two arguments: err and derivedKey . err is an exception object when key derivation fails,
otherwise err is null . derivedKey is passed to the callback as a Buffer .

Y 4 H 15l 1 'y

A i H e L £ 2l H & A

Security is all over the SE map

PEOPLE PROCESSES PROGRAMS

> .
&5 eC urtty

10

PLANNING

ORGANIZING

IMPLEMENTING

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:

e Explain why you should always hash and salt your
passwords

* Have basic literacy in some key cryptographic primitives
(hashes, message authentication codes, and encryption)

* Define key terms (attack surface, threat model) relating
to software/system security

* Explain why all aspects of software engineering are
necessary to think about in order to think about security

11

Security is a multiplayer game

The threat model specifies the
rules you imagine that the other
person is playing by

 Strategy.town has radically
different applicable threat
models than, say, Signal

The attack surface specifies
where the other player gets to
play the game

11 MAGINATION

A, CRYPTO NERD'S

HIS LAPTOR's ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
ELUSTER TO CRACK \T.

NO GOoD! IT'S
uﬂ% -BIT REN

E‘u”L F’LF';N

IS FOILED! ™~ %

1 ACTUALLY HAPPENM:

WHAT WeULD

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE TELlS US THE. PASSWORD.

G-OT IT,

@W

https://xkcd.com/538/

12

Security is a multiplayer game

Simple threat model and attack surface: on the web, an
attacker can make arbitrary requests to any APl endpoints and
send arbitrary messages over websockets, and can directly
interpret every message that comes from the server.

Obvious consequences:

* Don’t put secrets in a game’s View type (the fact that it’s not
shown in React isn’t sufficient!)

* Validate that it’s your turn on the backend (disabling the
“make move button” in React isn’t sufficient!)

13

Security is a multiplayer game

Obvious consequences
frequently are not:

New Messages

Want to hear something
mindblowing about gradescope?

If you set a test visibility policy, it
sends the data over to the client
and does the hiding **client-side**
using JS 19:06

Some intrepid students in my online
MS class figured this out and were
able to recover their hidden test
scores

Tests that we'd set visibility to after
the due date 19:07

14

Security is a multiplayer game

Keep an eye on
which game
you are playing

dostoevsky;

—defined Mon, 10 Jul 2023 09:25:34 GMT by theo [history]

look up Acronymy

15

Security Principle #2:
Watch for new attack surfaces

“Reverse shells” make a new attack surface

If your school uses Gradescope autograder, hidden test
cases are now a thing of the past.

FOR EDUCATIONAL PURPOSES ONLY. DO NOT CHEAT

Set up a listener on a publicly accessible server with nc -1k 1234 -vvv . Then submit code to an
assignment that creates a reverse shell and connects to your listener. This will allow you to type Linux
commands into your listener and they will execute on the autograder machine, returning the results to
you. From here you can exfiltrate hidden test cases. Or mine Bitcoin or whatever, there's no time limit
on autograders unless your professor manually wrote one in.

This can be as simple as copy-pasting some socket code, Google for "C reverse shell" or python or
whatever your assignment uses. Put the IP of your public server into whatever shell code you end up
using (make sure the port matches the listener, and you've allowed it thru the firewall if any).
Unfortunately Gradescope's AG machines don't have nc on them and the old bash redirection to

/dev/tcp/IP address/1234 trick doesn't seem to work.

https://www.reddit.com/r/csMajors/comments/rlkf55/if your school uses gradescope autograder_hidden/

Security Principle #2:
Watch for new attack surfaces

Code and SQL injection is a new attack surface
Don’t roll your own solution — use established library! (Zod, Mongoose...)

HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL, WE'VE LOST THIS
YOUR, SON'S SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEARS STUDENT RECORDS.
WERE HAVING S0ME N H WAY Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE Students;—- 7 ‘Il

AND I HOPE
J ~OH. YES LITTLE - YOUVE LEARNED
BOBBY TABLES, TO SANTIZE YOUR

ﬁ E ﬁ m WE CALL HIM. DATRBASE INPUTS,

https://xkcd.com/327/

17

https://xkcd.com/327/

Security Principle #2:
Watch for new attack surfaces

Log4) could trigger arbitrary HTTP requests from places that weren’t
supposed to be able to make HTTP requests

Extremely Critical Log4J Vulnerability
Leaves Much of the Internet at Risk

December 10,2021 & Ravie Lakshmanan

CVE-2021-44228 Detail

Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log

messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who
can control log messages or log message parameters can execute arbitrary code loaded from

The Apache software Fo] LD AP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled
actively exploited zero-daf by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Notethat this

Apache Log4j Java-based vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.

execute malicious code a| https://nvd.nist.gov/vuln/detail/ CVE-2021-44228

systems.

. 12021/12/ critical-logdi- .

18

https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Security Principle #3:
Beware the man in the middle

You and Amazon can’t actually see each other. How
do you know you’re interacting with Amazon?

Amazon (& =) Amazon (&)
Website | APl) |
g Copy of
Human User Amazon
Website
Additional

API

Security Principle #3:
Beware the man in the middle

With CORS, Amazon’s API tells the web browser:
ignore my response unless the user is on amazon.com

Amazon (& =
API

PN
Access 95617?visit id=63883..ty indicator&rd=1:1
to fetch at 'https://strategy.town/api/user/login
' from origin 'https://support.google.com' has
Copy Of ? been blocked by CORS policy: No 'Access-Control-

Allow-0rigin' header is present on the requested
Human User Amazon '
Website

Additional
API

20

Security Principle #3:
Beware the man in the middle

Proxying those requests gives Amazon’s website
more opportunities to notice something is wrong

You may need to use proxying to deal with
CORS in your projects!

Amazon (RN

API

.e\ Copy of

Human User Amazon

Website

Proxy
API

21

Browsers are Fascinating

* Influenced by browser makers,
consumer choices, standards P

bodies, online businesses... , .
* CORS works because Google S nlghtmare
~everyone would rather have ‘“Web Integ[ity APY”

CORS in their browser (but
remember your threat model!)

wants a DRM
* Browser monopolies arise and gatekeeper for the web

Change the balance of power It's just a "proposal,” but it's also being prototyped inside
Chrome right now.

https://arstechnica.com/gadgets/2023/07/googles-web-integrity-api-sounds-like-drm-for-the-web/

22

Browsers are Fascinating: Cookies

* Cookies add sessions to HTTP requests — the login
APl end point can set a cookie and subsequent
HTTP requests will send it back.

e If JavaScript has no business viewing the cookie, it
can be an HTTP ONLY cookie — code can’t see it

 BUT THE USER CAN! (Remember your threat model!!!)

* Makes it unnecessary to send (and verify!) the
password every time.

* Of course, it’s also how Facebook knows what jobs
you applied for...

23

Security Architecture

* CORS and HTTP ONLY cookies are part of the security
architecture of browsers— the mechanisms and policies
that we build into our system to mitigate threats

Lecture 14
1 Lock (Public)
ody) Documents/emails meant for public use or — E———
viewing. May include information that is made .
publicly available on our web sites, public O 1lLock (Public)
media, or press announcements. Use this label HESVAR" B R NTe & (N1 [Lo B3 9)
for documents/emails that are not work related.

Justification Required

12’ Your organization requires justification to change this label.
g External Access Allowe

(@ Northeastern Access C ® Previous label no longer applies

(& Facstaff Access Only
Previous label was incorrect
4 Lock (Critical Risk)

Browse s are Fa G External Access Allowe Other (explain) - Do not enter sensitive information

(& Northeastern Access C

T- All of this is security arc Cancel Change

(a4 Facstaff Access Only

Security Architecture and Security Culture

* Don’t check API keys (basically
passwords someone else
: . |
generates for you) into git, ever! S —
* Tools like GitGuardian of vour source code
automatically detect secrets in

repositories

buu',gl;es_\-’ bbdegrees
@ @ PayFit SafetyCulture

Scan. Detect. Remediate.

25

Security Architecture and Security Culture

* Industrial study of secret detection tool in a large
software services company with over 1,000
developers, operating for over 10 years

 What do developers do when they get warnings of
secrets in repository?

* 49% remove the secrets; 51% bypass the warning Is this a problem?
* Why do developers bypass warnings? Whose problem is it?

* 44% report false positives, 6% are already exposed
secrets, remaining are “development-related” reasons,
e.g. “not a production credential” or “no significant
security value”

26

Cryptographic Primitive #2: Signhing

* Your server can have a secret key (just a random one)

* If you compute sha256(secret + message) = hash, then give the message
AND the hash to someone else, they can hand you back the message
and the hash later, and you can believe “you” (someone who knew the
secret) agreed to compute that hash — no one else could!

* The hash is an HMAC: a Hash Message Authentication Code
e Sign message “this is user2”: that plus the HMAC is your cookie!

import { createHmac } from "node:crypto"; | |
(alias) function createHmac(algorithm: string, key: BinaryLike | KeyObject, options?:
Stream.TransformOptions): Hmac

import createHmac

Creates and returns an Hmac object that uses the given algorithm and key . Optional options argument controls stream behavior.

The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are
'sha256' , 'sha512"' , etc. On recent releases of OpenSSL, openssl list -digest-algorithms will display the available digest

algorithms.

Cryptographic Primitive #2: Signhing

* Public key encryption allows asymmetric signing

* Paired public key and private key

* Anyone with the public key can verify that a message was signed only by
someone with the private key

* One basis of the security of HTTPS

Amazon (8 =
Website
“I'm totall ezos”
' , the person with G
private key that matches Amazon private key
Amazon public key Amazon public key

Human User
Amazon public key

28

Security Principle #4:
Chains and webs of trust

Your browser or computer shipped with some public keys:

e Google Trust Services LLC (GTS Root R4) public key
* Internet Security Research Group (ISRG Root X1) public key
* DigiCert High Assurance EV Root CA public key

29

8 paypal.com

S e C U rl ty P rl n C i p | e # 4 : < Connection security for www.paypal.com
C h a i n S a n d We b S Of tru St 8 You are securely connected to this site.

Certificate issued to:

DigiCert High Assurance EV Root CA priva

PayPal, Inc.
San Jose

* Signs the message “Whoever has the privEIELIE
DigiCert SHA2 Extended Validation Serv kil
legit and is a certificate authority”

DigiCert SHA2 Extended Validation Server CA private key holder

* Signs the message “Whoever has the private key matching
paypal.com public key is definitely associated with the legal
entity PayPal.com, but is not a certificate authority”

www.paypal.com private key holder

 Signs the message “Hi, if you think you’re connecting to
https://www.paypal.com/, would you like to give me your
password?”

30

8 wub.site

S e C U rl ty P rl n C i p | e # 4 : < Connection security for social.wub.site
C h a i n S a n d We b S Of tru St 8 You are securely connected to this site.

|
Internet Security Research Group (ISRG R«

Verified by: Let's Encrypt

More information

 Signs the message “Whoever has the priv
Encrypt (R10) private key seems legit and is a certificate
authority”

Let's Encrypt (R10) private key holder

* Signs the message “Whoever has the private key matching
social.wub.site public key seems legit associated with that
domain, but not as a certificate authority”

social.wub.site private key holder (that is, Rob)

 Signs the message “Hi, if you think you’re connecting to
https://social.wub.site/, would you like to give me your
password?”

32

Security Principle #4:
Chains and webs of trust

* You can do this on your own server for free
* This wasn’t the case before the Let’s Encrypt nonprofit!

n Let’s Encrypt Documen tation Get Help Donate - About Us ~ Languages @ v

A nonprofit Certificate Authority providing TLS
certificates to 300 million websites.

We were awarded the Levchin Prize for Real-World Cryptography! Learn more

GetStarted] [Sponsor

33

| need to get SOMEONE the
user trusts to vouch that
I’'m strategy.town

Security Principle #4:
Chains and webs of trus

>
| Skechy Not
° ©) uoud ke Wifi - 1 Strategy
N , O connect
to strategy.town Network town

Strategy |- A
town

34

| need to get SOMEONE the
user trusts to vouch that
I’'m strategy.town

Security Principle #4:
Chains and webs of trus

>
| Skechy Not
° ©) uoud ke Wifi - 1 Strategy
. , O connect
to strategy.town Network town

o Hopefull —
Let S n T~ Ofss.: ' : | strategy |z
Encrypt Sketchy town g a

Internet

Let’s Encrypt is vouching for anyone IT SEES as the strategy.town owner

35

Security Principle #4:
Chains and webs of trust

 Modern TLS/HTTPS security relies on the security
of the domain name system

* The DNS system has its own security issues and
threat models!

The .org controversy

In November 2019, the Internet Society (ISOC) its
intention to sell Public Interest Registry (PIR) — the registry
for the .org top-level domain - to investment firm Ethos
Capital for US$1.135 billion. The announcement has
generated controversy, with supporters and opponents of the
deal strongly voicing their views.

https://dig.watch/trends/dotorg

36

Cryptographic Primitive #3:
Shared secret encryption

* Absolutely perfect security via one-time pads

* You and | both have n TRULY = rmmessemessmemmmmmsnsmnimenees ol WL R F A L
B e VCISROPORMLEI IROTADOBAS
RANDOM bytesx LENNY ZANSE JRNXE BYNFVY KOZAT |o G NOFPQ UVWXY Z
xwvv;;n'xoxxzxglnor:nsiA::
. Y d VRETH JPCSV RUSYRS JEXan TLOCL o fv 78!:?0:!1:!1!0:!D§l;2;:
8
ou send me X xor Message Fevre suivs xrani weues savey S SPTIRCTSIMLEIISIEEIIITELL
: TSVl xnm I Rasnxp PI 0oz z ‘A’; Q;g!ul‘liio’!DCIQIYX'V
K NP N Yo J
* | decode message by computing WG H T]
CYJey OBXKR PRTYY YTKEX ATOP N [H :gnéggux_’_,,.c,gpgis.:‘t’x;igé
(X xor Message) xor X = Message eWeox rrasy amzze eezva cvess |- RaFORRCEIINCYISISALITEVSTE
I P ONMIES IROPEDCOASSXWYDTSER
YIIUJ TURRZ GURDL YOVRU NOCSY [ARCDEFGHIJKLMNOPQRATOVWXYZ
* ONLY FOR ONE TIME!!! R e
O AR LA OO L P P AT,
QI NDS CHNOFE XGBYV Y CAYSO T 0B8NV P‘AEES‘§§§27:D 2 'V_g_l_’..lgP_O
u A DET oFr STUV z

KJ1 AZ WYUTSRQPON

3 ZX 0Z JI® DBRCY BNUVE LFAKXT - NO P T TOVWXYZ
KJIHGFEDCBAZYXWYUTSR ro;
YWX

T! WP LIFN IRNSF RUVYE VITRN D GE PQRS
HGFEDCS z'rxwvv-rsunronn?tk
¥ z

P x31
neone zusze EPvox MezxY ERTEX (8 ST RO LR I X WY TS RAPONMLY
= i’c ETGHIJEKLMNOPQRSTUVWXYZ
VEIOE MDVTN GES NG LRZIVGEG UKVaEK G M
s ABCDEFGHIJELMNOPOQRETUVWXYZ

GH L TUVWXYZ
CRAZYXWVUTERQPONNMLETYIN

H
POFRI QCFAA NLTKE DANDA QAITNY "r‘
' a

https://en.wikipedia.org/wiki/One-time_pad

37

Cryptographic Primitive #3:
Shared secret encryption

* There are a couple of reasonably secure symmetric encryption standards
* Use a small shared secret to encrypt lots of data

* We think most of the ones we currently use are pretty secure, even
against quantum computers

* Problem: how do share a secret with Amazon?

-
’ “‘. e ¥
Amazon i (8

L4 ”,
Website
%:.

i

*erest

Human User Amazon private key
Amazon public key Amazon public key

38

Cryptographic Primitive #3:
Shared secret encryption

* Problem: how do share a secret with Amazon?

* If two people know two public keys and either one of the corresponding
private keys, they can do math to come up with a shared secret, and use

that for symmetric encryption!
* Textbook ways of doing this are very vulnerable to quantum computers

Rando public +
Amazon pubic +

Rando public +

Amazon pubic + _ -> Amazon {* S N ot
Rando private = Hi i’'m a rando, ok mazon private =
some huge here’s my Rando Website SAME huge

public key i number

number

SO
selety

Human User Amazon private key
Amazon public key Amazon public key

Rando private key
Rando public key

39

Review of this whirlwind tour

Four big ideas Rob thought were worth emphasizing:

1. Use an established solution

2. Watch for new attack surfaces

3. Beware the man in the middle

4. It’s all chains and webs of trust

Three cryptographic primitives you should be aware of:
1. Hash

2. Signing/message authentication codes

3. Shared secret encryption

40

Learning Objectives for this Lesson

* Now that it’s the end of the lesson, you should be
able to:

e Explain why you should always hash and salt your
passwords

e Have basic literacy in some key cryptographic primitives
(hashes, message authentication codes, and encryption)

* Define key terms (attack surface, threat model) relating
to software/system security

* Explain why all aspects of software engineering are
necessary to think about in order to think about security

41

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 6, Lesson 1 Security
	Slide 2: Warmup: what’s wrong with how security.town does passwords?
	Slide 3: Warmup: what should we do about passwords?
	Slide 4: Cryptographic Primitive #1: Hash
	Slide 5: Cryptographic Primitive #1: Hash
	Slide 6: Warmup: what should we do about passwords?
	Slide 7: Warmup: what should we do about passwords?
	Slide 8: Warmup: what should we do about passwords?
	Slide 9: Security Principle #1: Use an established solution
	Slide 10: Security is all over the SE map
	Slide 11: Learning Objectives for this Lesson
	Slide 12: Security is a multiplayer game
	Slide 13: Security is a multiplayer game
	Slide 14: Security is a multiplayer game
	Slide 15: Security is a multiplayer game
	Slide 16: Security Principle #2: Watch for new attack surfaces
	Slide 17: Security Principle #2: Watch for new attack surfaces
	Slide 18: Security Principle #2: Watch for new attack surfaces
	Slide 19: Security Principle #3: Beware the man in the middle
	Slide 20: Security Principle #3: Beware the man in the middle
	Slide 21: Security Principle #3: Beware the man in the middle
	Slide 22: Browsers are Fascinating
	Slide 23: Browsers are Fascinating: Cookies
	Slide 24: Security Architecture
	Slide 25: Security Architecture and Security Culture
	Slide 26: Security Architecture and Security Culture
	Slide 27: Cryptographic Primitive #2: Signing
	Slide 28: Cryptographic Primitive #2: Signing
	Slide 29: Security Principle #4: Chains and webs of trust
	Slide 30: Security Principle #4: Chains and webs of trust
	Slide 32: Security Principle #4: Chains and webs of trust
	Slide 33: Security Principle #4: Chains and webs of trust
	Slide 34: Security Principle #4: Chains and webs of trust
	Slide 35: Security Principle #4: Chains and webs of trust
	Slide 36: Security Principle #4: Chains and webs of trust
	Slide 37: Cryptographic Primitive #3: Shared secret encryption
	Slide 38: Cryptographic Primitive #3: Shared secret encryption
	Slide 39: Cryptographic Primitive #3: Shared secret encryption
	Slide 40: Review of this whirlwind tour
	Slide 41: Learning Objectives for this Lesson

